Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors

نویسندگان

  • G. Jogesh Babu
  • Yogendra P. Chaubey
  • G. J. Babu
  • Y. P. Chaubey
چکیده

This paper considers multivariate extension of smooth estimator of the distribution and density function based on Bernstein polynomials studied in Babu et al. [2002. Application of Bernstein polynomials for smooth estimation of a distribution and density function. J. Statist. Plann. Inference 105, 377–392]. Multivariate version of Bernstein polynomials for approximating a bounded and continuous function is considered and adapted for smooth estimation of a distribution function concentrated on the hypercube 1⁄20; 1 d ; d41. The smoothness of the resulting estimator, naturally lends itself in a smooth estimator of the corresponding density. The functions with other compact or non-compact support can be dealt through suitable transformations. The asymptotic properties, namely, strong consistency and asymptotic normality of the resulting estimators are investigated under a-mixing. This has been motivated by estimation of conditional densities in nonlinear dynamical systems. r 2005 Elsevier B.V. All rights reserved. MSC: primary 62G05; 62G07; 62G20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials

In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006